

Using Context-aware Collaborative Filtering for POI Recommendations in Mobile Guides

Haosheng Huang and Georg Gartner Vienna University of Technology, Austria

1. Motivation

- When visiting a new city, tourists often ask "what to visit next".
 - identify Points of Interest (POIs) from a huge set of choices

- "Experiences" from past users can help current users to solve their problems¹.
 - More and more GPS trajectories are created.
 - How can we make use of these highly available GPS datasets?

A promising technique

- Collaborative filtering (CF): "Amazon-like recommendation"
 - "People who ... also" : recommending items that people with similar preferences liked in the past
 - Often employed for movie, product recommendation
- CF in LBS
 - Often using explicit ratings: requiring users' active involvement
 → impractical for LBS
 - Providing context-aware CF is still very challenging.

Research goals

- Designing context-aware CF methods
 - to make use of the highly available GPS trajectories
 - for providing contextual "Amazon-like" POI recommendations in mobile guides
- Vision: "in similar context, after visiting POI A, other people similar to you often went to POI B."

2. Key issues of context-aware CF

- Building contextual user profiles
- Measuring usefulness of other users' "opinions"
- Making recommendations
 - Aggregating "useful opinions"

2.1 Building contextual user profiles

- Extracting visited POIs (stops) from trajectories
 User profile: a set of visited POIs
- Labeling user profile with <u>"context of the visit"</u>
 - Which context parameters are relevant and thus needed to be modeled?

Identifying relevant context parameters

- A two-stage method
 - Identifying an initial set of candidate context parameters from literature or experts.
 - Refining the initial set according to the collected data
 - If tourists in different weather conditions behave differently, "weather" is a relevant parameter.

2.2 Measuring usefulness of other users' "opinions"

- Measuring usefulness of other users' profiles in making recommendation for the current user in the current context
 - *Preference-based user similarity*: measured by comparing the POIs they visited

$$SIM_{user}(a,b) = \frac{\sum_{p \in POIS_{a,b}} \frac{1}{F_p}}{\sqrt{\left(\sum_{p \in POIS_a} \frac{1}{F_p}\right) * \left(\sum_{p \in POIS_b} \frac{1}{F_p}\right)}}$$

Context similarity: the similarity between other users' context and the current user's context

Context similarity measure

- Statistic-based approach (SBA)
 - If visits in a context (situation) are similar to visits in another situation, these two situations can be considered as similar.
 - Similarity between two situations
 - Measuring the "distance" of visits in these two situations.
 - Transforming the "distance" into similarity

$$Dist(A,B) = \sqrt{\frac{\sum_{p \in \overline{P}} \frac{1}{F_p} * (A_p - B_p)^2}{\sum_{p \in \overline{P}} \frac{1}{F_p}}}$$

$$SIM_{conx}(A,B) = e^{-Dist(A,B)}$$

2.3 Making recommendations

 Two ways of combining user similarity and context similarity to identify "useful" users

3. Evaluation

- GPS trajectories collected in Vienna zoo
 - Extracting a set of visited POIs (stops) from each trajectory to build user profiles
 - Only considering trajectories with at least 6 POIs
 - 41 trajectories in total
- Some additional information
 - weather (sunny/rainy), age (>=45, <45), time limit(Y/N), year ticket(Y/N), first visit to the zoo (Y/N), with baby (Y/N)
 - The initial set of context parameters

3.1 Identifying relevant context parameters

• How do tourists' visits differ among different conditions for each candidate context parameter?

	The number of visited POIs			Length of visit (km)			Duration of visit (hour)		
Age (>=45, <45)	p=0.18 13.23)	(15.45	VS.	p=0.19 3.09)	(4.56	VS.	p=0.16 2.01)	(2.88	VS.
First Visit (Yes, No)	p=0.52 13.56)	(14.46	VS.	p=0.26 3.18)	(4.19	VS.	p=0.30 2.08)	(2.58	VS.
Annual Ticket (Yes, No)	p=0.63 14.77)	(13.50	VS.	p=0.79 3.41)	(3.66	VS.	p=0.28 2.05)	(2.62	VS.
Companion (Yes, No)	p=0.93 14.00)	(13.88	VS.	p=0.71 3.89)	(3.39	VS.	p=0.74 2.03)	(2.30	VS.
Time Limit (Yes, No)	p=0.29 14:32)	(13.00	VS.	p=0.31 3.74)	(2.98	VS.	p=0.60 2.32)	(2.10	VS.
Weather (Sunny, rainy)	p=0.01 11.64)	(15.07	vs.	p=0.04 2.52)	(4.01	vs.	p=0.01 1.52)	(2.62	vs.

- The final set of context parameters:
 - <age, weather>

3.2 Experimental evaluation

- Leave-one-out evaluation
 - Using 40 of the 41 trajectories (visitors) to predict for the remaining one.
- Predictive accuracy
 - If the predicted POI is actually visited by the user, the recommendation process is considered as successful.

Results (1): How do the performances of the CaCF methods change when using different sets of context parameters?

... choosing a suitable set of relevant context parameters is very important and may affect the recommendation performance.

...Using the proposed set of context parameters performs the best: *the two-stage method is feasible and useful for identifying relevant context parameters*.

Results (2): How do the CaCF methods perform differently when making recommendations for different places of a visit?

... a upward trend for the accuracy of all CaCF methods and the nonCa_CF when the positions of the predicted POI increase.

...the performance of contextual modeling approach is at least as good as the performance of contextual pre-filtering approach.

... the CaCF methods perform considerably better than the non-contextual CF method: *including context information in a CF for mobile guides can improve the recommendation performance.*

4. Conclusions

- Two context-aware CF methods are designed to mine GPS trajectories to provide users with contextual "Amazon-like" POI recommendations.
- The evaluation shows that
 - The two-stage method can help to identify relevant context parameters.
 - Including context information into CF can provide users with more appropriate recommendations.

5. Work in progress

- Evaluated with different kinds of data
 Data from <u>Vienna zoo</u>, city center, city-wide
- Exploring more complex CaCF methods

 Considering different types of context information

Thank you! & Comments?

Haosheng Huang Georg Gartner

Research Group Cartography Vienna University of Technology http://cartography.tuwien.ac.at haosheng.huang@tuwien.ac.at georg.gartner@tuwien.ac.at